翻訳と辞書 |
Value distribution theory of holomorphic functions : ウィキペディア英語版 | Value distribution theory of holomorphic functions
In mathematics, the value distribution theory of holomorphic functions is a division of mathematical analysis. It tries to get quantitative measures of the number of times a function ''f''(''z'') assumes a value ''a'', as ''z'' grows in size, refining the Picard theorem on behaviour close to an essential singularity. The theory exists for analytic functions (and meromorphic functions) of one complex variable ''z'', or of several complex variables. In the case of one variable the term Nevanlinna theory, after Rolf Nevanlinna, is also common. The now-classical theory received renewed interest, when Paul Vojta suggested some analogies with the problem of integral solutions to Diophantine equations. These turned out to involve some close parallels, and to lead to fresh points of view on the Mordell conjecture and related questions.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Value distribution theory of holomorphic functions」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|